Galactic Astronomy, Spring 2017 **PROBLEM SET I**

Deadline: 5PM OF WEDNESDAY, MARCH 29, 2017

- 1. Distance independent quantity (5%). Show that a star's effective temperature, T_{eff} , can, in principle, be determined without knowing its distance by expressing T_{eff} as a function of the star's bolometric magnitude, m_{bol} , and its angular diameter, θ .
- 2. Star count (10%). Show that, if the distribution of stars in space is uniform, the distribution of stars over absolute magnitude in a magnitude-limited survey is independent of the survey's limiting magnitude.
- 3. Initial luminosity function (15%). Suppose the star-formation rate in a population varies with time t as $e^{-\alpha t}$, and let the oldest star in the population have formed at t = 0. Show that the initial luminosity function, $\Phi_0(M)$, for such a case can be written as

$$\Phi_0(M) = \frac{e^{\alpha t} - 1}{e^{\alpha t_{\min}} - 1} \Phi(M),$$

where $t_{\min} = \min(t, \tau_{\text{MS}})$.