Theoretical Mechanics, Spring 2022 **PROBLEM SET VII**

Deadline: 6PM of Monday, March 14, 2022

1. Torque on a system (10%). Even though the total force on a system of particles is zero, the net torque may not vanish. Show that the net torque has the same value in any coordinate system. *Hint:* You may denote the position vectors to the α -th particle as \mathbf{r}_{α} and \mathbf{r}'_{α} in the two arbitrary coordinate systems that

$$\boldsymbol{r}_{lpha}=\boldsymbol{R}+\boldsymbol{r}_{lpha}^{\prime}.$$

 Force law with velocity dependence (10%). Consider a force law between two particles of the form

$$\boldsymbol{F}(\boldsymbol{r}) = k_1 \left(\boldsymbol{r} - \frac{\dot{\boldsymbol{r}}}{v_0} \right), \qquad (1)$$

where k is a constant, and $\mathbf{r} \equiv \mathbf{r}_1 - \mathbf{r}_2$, with \mathbf{r}_1 and \mathbf{r}_2 being the position vectors of the two particles. Explain why the internal torque does not vanish for a system composed of particles interacting with such force law. Is this a conservative system?

- 3. Elastic collisions between two particles (20%). Consider a particle of mass m_1 elastically collides with a particle of mass m_2 at rest.
 - (a) (10%) What is the maximum fraction of kinetic energy loss for m_1 ?
 - (b) (10%) In a pool game, some rules of thumb can be easily understood as elastic collisions between two billiard balls. Explain why two billiard balls often make a right angle (90°) after a collision. Use the result from (a), explain the conditions to make a full stop of the cue ball.
- 4. Energies of two-particle collisions (30%). Consider an elastic collision between two particles of mass m_1 and m_2 , with m_2 initially at rest. After the collision, denote the angle of m_1 deviated from its initial path as ψ (Fig. 1).
 - (a) (15%) Show that the ratio of the kinetic energies m_1 before and after the collision, K_1/K_0 , can be expressed in terms of $m_2/m_1 \equiv x$ and $\cos \psi \equiv y$ as

$$\frac{K_1}{K_0} = \frac{2y^2 + x^2 - 1 + 2y\sqrt{x^2 + y^2 - 1}}{(1+x)^2} \tag{2}$$

Figure 1:

(b) (15%) Plot K_1/K_0 as a function of ψ for x = 1, 2, 4, and 12. In the case of m_1 being protons or neutrons, what atoms do m_2 represent in these energy plots? How about the case of m_1 being alpha particles?