Radio Astronomy, Spring 2024 PROBLEM SET III

Deadline: 5PM OF MONDAY, NOVEMBER 18, 2024

 Kirchhoff's law and Einstein coefficients (10%). The condition of LTE renders Kirchhoff's law,

$$\frac{\varepsilon_{\nu}}{\alpha_{\nu}} = B_{\nu}(T),$$

where ε_{ν} is the emissivity, α_{ν} the absorption coefficient, and $B_{\nu}(T)$ the Planck function.

- (a) (5%) Estimate the ratio of the emissivity to the absorption coefficient for CO (1-0) at $\nu = 115.271$ GHz and T = 20 K, typical for the millimeter waveband. Repeat for $\nu = 4.8$ GHz and T = 10 K, typical for the centimeter waveband.
- (b) (5%) Consider a two-level system with equal statistical weights and nearly equal level populations N_1 and N_2 . In the limit $h\nu \ll kT$, use Kirchhoff's law to find the ratio of the Einstein coefficients A/B, from $\varepsilon_{\nu} = h\nu AN_2/4\pi$ and $\alpha_{\nu} = (h\nu)^2 N_1 B/kcT$. Determine the ratio of the Einstein A to B coefficients for the values in part (a) and thus determine the relative influence of stimulated and spontaneous emission as a function of T.
- 2. Two-level systems (20%). Let's investigate the variation of excitation temperature, T_{ex} , with the collision rate, C_{21} ad the spontaneous emission rate, A_{21} , for a two-level system. In class, we have shown that the excitation temperature can be expressed as

$$T_{\rm ex} = T_k \left(\frac{T_0 C_{21} + T_b A_{21}}{T_0 C_{21} + T_k A_{21}} \right),$$

where T_k is the kinetic temperature, T_b the brightness temperature of the radiation field, and $T_0 \equiv h\nu/k$.

- (a) (5%) The collision rate is given by $C_{21} = n_{\text{H}_2} K_{21} = n_{\text{H}_2} \langle \sigma v \rangle$, where the collision rate coefficient is $K_{21} \equiv \langle \sigma v \rangle \sim 10^{-10} \text{ cm}^3 \text{ s}^{-1}$. When $C_{21} = A_{21}$ for the transition involved, the is referred to as the critical density, n_{crit} . For the atomic hydrogen 21 cm line, $A_{21} = 2.85 \times 10^{-15} \text{ s}^{-1}$. Find n_{crit} for this transition.
- (b) (5%) For multi-level systems, computation of the level population becomes more sophisticated. However, for the purpose of comparison, repeat the cal-

culation for the HCO⁺ (1 - 0) at $\nu = 89.188$ GHz with $A_{21} = 3 \times 10^{-5}$ s⁻¹. Compare the value of n_{crit} with the one from part (a).

- (c) (5%) Now, take $T_k = 100$ K, typical for hot molecular cores, and assume a radiation field given by the cosmic microwave background at $T_b = 2.73$ K. Solve for the local density, $n_{\rm H_2}$, and evaluate its value for the HCO⁺ (1 0) emission with $T_{\rm ex} = 3.5$ K.
- (d) (5%) For the same density in part (c), compute $T_{\rm ex}$ for the CO (1-0) transition with $A_{21} = 7.4 \times 10^{-8} \, {\rm s}^{-1}$. How does this value compare to the kinetic temperature T_k ?