Stellar Astrophysics, Fall 2024 PROBLEM SET VII

Deadline: 5PM OF THURSDAY, DECEMBER 5, 2024

 Temperature dependence of fusion reactions (10%). The flux of energetic neutrinos from ⁸B decay in branch III of the proton-proton chain is very dependent on the central temperature of the Sun. Show that the rate of the reaction producing ⁸B,

$$p + {}^7\text{Be} \rightarrow {}^8\text{B} + \gamma,$$

is approximately proportional to T^{14} , when the temperature T is near to 1.2×10^7 K.

- 2. Photodisintegration of nuclei (15%). The photodisintegration of nuclei plays an increasingly important role as a star evolves and as the temperature at its center increases.
 - (a) (10%) Derive an expression for the number density of photons with an energy above 9.98 MeV in a gas at temperature T. Recall the Planck's formula for the photon flux density in the frequency range ν to $\nu + d\nu$

$$F_{\nu}\mathrm{d}\nu = \frac{2\pi\nu^2}{c^2} \frac{h\nu}{e^{h\nu/kT} - 1} \mathrm{d}\nu,$$

and assume that $kT \ll 9.98$ MeV, the minimum energy needed to eject a ⁴He nucleus from a ²⁸Si nucleus.

(b) (5%) Estimate the fractional change in the number of such photons that occurs when the temperature rises from 10^9 K to 4×10^9 K.